The core Caml system, 2009-2010

Xavier Leroy

INRIA Paris-Rocquencourt

OCaml users meeting, 2010-04-16

B INRIA

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 1/30

This meeting brought to you by. ..

Sylvain Le Gall at OCamlCore (general organization).
INRIA Paris-Rocquencourt conference bureau (local arrangements).

The Caml Consortium (funds).

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 2 /30

Outline

© Caml development news

© Caml consortium news

© New language features in OCaml 3.12

@ Closing remarks

X. Leroy (INRIA) The core Caml system, 2009-2010

Recent releases

Minor release 3.11.1 (june 2009):

@ 45 problem reports fixed.

Minor release 3.11.2 (january 2010):
@ 32 problem reports fixed
o Debugger (ocamldebug) updated and improved (X. Clerc).

o 8 feature wishes granted.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 4 /30

Next release

Major release 3.12.0:
@ Surprisingly many new language features! (See later.)
@ More bug fixing & wish granting.

@ Almost no backward-incompatible changes.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 5 /30

Next release

Tentative planning:
@ Done: feature freeze.

@ May—June: finish merging and documentation; update camlp4 and
ocamldoc; bug fixing.

Early June: first beta release.

Early July: final release.

As usual, testing and feedback are much appreciated.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 6 /30

Manpower

On the rise, esp. thanks to external contributors:
e Alain Frisch (Lexifi)
e Mark Shinwell (Jane Street)

Plus the usual suspects:
@ The “historic” INRIA team.
e Jacques Garrigue (Nagoya university).

e Xavier Clerc (INRIA research programmer, part-time).

Equivalent to about 1 person full-time.

Legal status of contributions from outside INRIA was clarified.
(Contributor License Agreement.)

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010

7/30

Outline

© Caml consortium news

X. Leroy (INRIA)

The core Caml system, 2009-2010

Members

One new member this year: MLState.

11 members total:

before 2007 2008 2009 2010
Dassault Aviation Intel CEA SimCorp MLState
Dassault Systemes Jane Street OCamlCore

Lexifi Citrix

Microsoft

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 9 /30

Actions of the Consortium

What the Consortium does:
@ Sell permissive licensing conditions on the Caml code base.
@ Enable lightweight corporate sponsoring.
@ A place to discuss needs with power users from industry.
@ Public relation.
@ Brings “pocket money” e.g. for sponsoring this meeting.

New this year:
@ Acts as a “sounding board” for discussing new features.

@ Two members contributing directly to the Caml code base.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 10 / 30

Latest meeting of the Consortium

December 2009, in Paris.
Well attended: 12 participants + 4 INRIA.
Fruitful discussions of possible extensions and future developments

(a majority of which materialized in 3.12.0)
(continuing on the Consortium mailing list).

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 11 /30

Outline

© New language features in OCaml 3.12

X. Leroy (INRIA)

The core Caml system, 2009-2010

1. Record notations

In record patterns and record expressions, a component id stands for
id = id, and M.id stands for M.id = id.

open Complex
let polar d theta =
let re = d *. cos theta and im = d *. sin theta

in { re; im }

let conj { re; im } = { re; im = -. im }

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 13 / 30

1. Record notations

A record pattern can end with ; _, meaning “this pattern doesn't list all
fields of the record type, but this is intentional”.

open Complex

let proj { re = x } = x (* warn if warning R active *)

let proj { re = x; _ } = x (¥ does not warn *)

Warning (turned off by default) if no ;_ and some fields are missing.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 14 / 30

2. Explicit method override

method! defines a method like method does, but mark intent to override
a method of the same name already defined in a superclass.

class sub_c
inherit c
method! m
method n
end

object

Error if ¢ does not already defines a method named m.

Warning (turned off by default) if ¢ defines a method named n.

(Same for val! and inherit!.)

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 15 / 30

3. Local open (let open...in...)

By popular demand and also because the corresponding Camlp4 extension
was not robust enough:

let polar d theta =
let open Complex in { re = d *. cos theta; im = d *. sin theta }

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 16 / 30

3. Local open (alternative notation)

M. (e) equivalent to let open M in e
module Float = struct

let (+) = (+.)

let (x) = (*.)
end

let norm x y = Float.(sqrt(x * x + y * y))

(Taking a leaf from Christophe Troestler's “delimited overloading”
package, but much less powerful.)

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 17 / 30

4. Polymorphic recursion

Variables bound by let and let rec can receive an explicit polymorphic
type ’a.T

let id : ’a. ’a -> ’a = fun x -> X (x OK *)
let id : ’a. ’a -> ’a = fun x > 1 (* Error *)
let id : ’a -=> ’a = fun x > 1 (* OK with ’a = int *)

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 18 / 30

4. Polymorphic recursion

Enables recursive definitions where the recursively-bound functions can be
used at several types within the recursion.

type term =
A of int | B of (string * term) list | C of (int * term) list

let rec shift = function
> A (x + 1)

-> B (shift_list 1)
-> C (shift_list 1)

QW=
o X

and shift_list: ’a. (Pa * term) list -> (Pa * term) list = function

| 0 -> 0
| (key, t) :: rem -> (key, shift t) :: shift_list rem

(Plus: non-regular recursive datatypes, e.g. Okasaki's data structures.)

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 19 / 30

5. First-class modules

Encapsulate a module as a core language value (with an explicit type),
then recover the module from this value.

expr ::= ...| (module module-expr : package-type)
module-expr ::= ...| (val expr : package-type)
type = ...| (module package-type)

package-type ::= modtype-path with t; =7 and ...t, = 7,

(An extension of Claudio Russo's proposal, part of Moscow ML.)

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 20 / 30

5. First-class modules

Typical use: selecting at run-time among several implementations of a
signature.

module type DEVICE = sig ... end
let devices : (string, (module DEVICE)) Hashtbl.t
= Hashtbl.create 17

module SVG = struct ... end

let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)
module PDF = struct ... end

let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)

module Device =
(val (try Hashtbl.find devices (parse_cmdline())
with Not_found -> eprintf "Unknown device %s\n"; exit 2)
: DEVICE)

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 21 /30

5. First-class modules

More advanced uses:

@ Functors that take a list of structures as argument.
@ Encodings of first-class values with existential types.

@ Encodings of some Generalized Algebraic Data Types.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 22 /30

6. Named types as parameters to functions

(type t) in the parameter list of a function.

@ Within the function, t is a new, abstract type name.

@ Qutside, t becomes a regular type variable o
(which can be generalized or instantiated as usual).

@ No run-time effect (no type is actually passed).

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 23 /30

6. Named types as parameters to functions

Usage: bridging module-level constructs and core-level polymorphism.
let sort_uniq (type s) (cmp : s -> s -> int) (1: s list) =
let module S =
Set.Make(struct type t = s let compare = cmp end) in
S.elements (List.fold_right S.add 1 S.empty)

The function sort_uniq has type

Va. (¢ — a — int) — « list — « list

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 24 / 30

6. Named types as parameters to functions

Another example: local exceptions in polymorphic functions.

let new_exn (type t) () =

let module M = struct exception E of t end in

(fun x -> M.E x), (function M.E x -> Some x | _ -> None)

The function new_exn has type

Va. unit — (o — exn) X (exn — « option)

X. Leroy (INRIA) The core Caml system, 2009-2010

OCaml users meeting 2010 25 / 30

7. Recovering the type of a module

module type of M denotes the type of the module expression M.

It can be used in conjunction with include to enrich the signature of an
existing module:

module type MYHASH = sig
include module type of Hashtbl

val add_all: (’a, ’b) t -> (’a, ’b) t -> unit
end

module MyHash : MYHASH = struct
include Hashtbl

let add_all t1 t2 = iter (add t1) t2

end
X. Leroy (INRIA) The core Caml system, 2009-2010

OCaml users meeting 2010 26 / 30

8. Substitution & removal of types in signatures

S with type t := 7T
@ Deletes the declaration type t from signature S

@ Replaces all uses of t in S with 7.

Contrast with S with type t = 7, which
@ Enriches the declaration type t as type t =17

@ Keeps the declaration of t.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 27 / 30

8. Substitution & removal of types in signatures

Application: combine signatures that have identically-named types.

module type S1 = sig type t val opl: ... end
module type S2 sig type t val op2: ... end

module type Siplus2

sig (* or: %) sig
type t
include S1 with t := t include S1
include S2 with t := t include S2 with t =t

end end

Cannot do with regular with type t = 7 constraints, because multiple t
components remain.

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 28 / 30

Outline

@ Closing remarks

X. Leroy (INRIA)

The core Caml system, 2009-2010

Personal wishes

Hope you will like OCaml 3.12!

How can you help?
@ By testing & providing quick feedback.

@ By volunteering to work on parts we handle poorly
(esp. the Windows port and the Windows binary distributions).
@ By joining community efforts, esp. in the area of packaging and
distribution.

Keep up the good work!

X. Leroy (INRIA) The core Caml system, 2009-2010 OCaml users meeting 2010 30/ 30

	Caml development news
	Caml consortium news
	New language features in OCaml 3.12
	Closing remarks

