
The core Caml system, 2009–2010

Xavier Leroy

INRIA Paris-Rocquencourt

OCaml users meeting, 2010-04-16

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 1 / 30

This meeting brought to you by. . .

Sylvain Le Gall at OCamlCore (general organization).

INRIA Paris-Rocquencourt conference bureau (local arrangements).

The Caml Consortium (funds).

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 2 / 30

Outline

1 Caml development news

2 Caml consortium news

3 New language features in OCaml 3.12

4 Closing remarks

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 3 / 30

Recent releases

Minor release 3.11.1 (june 2009):

45 problem reports fixed.

Minor release 3.11.2 (january 2010):

32 problem reports fixed

Debugger (ocamldebug) updated and improved (X. Clerc).

8 feature wishes granted.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 4 / 30

Next release

Major release 3.12.0:

Surprisingly many new language features! (See later.)

More bug fixing & wish granting.

Almost no backward-incompatible changes.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 5 / 30

Next release

Tentative planning:

Done: feature freeze.

May–June: finish merging and documentation; update camlp4 and
ocamldoc; bug fixing.

Early June: first beta release.

Early July: final release.

As usual, testing and feedback are much appreciated.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 6 / 30

Manpower

On the rise, esp. thanks to external contributors:

Alain Frisch (Lexifi)

Mark Shinwell (Jane Street)

Plus the usual suspects:

The “historic” INRIA team.

Jacques Garrigue (Nagoya university).

Xavier Clerc (INRIA research programmer, part-time).

Equivalent to about 1 person full-time.

Legal status of contributions from outside INRIA was clarified.
(Contributor License Agreement.)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 7 / 30

Outline

1 Caml development news

2 Caml consortium news

3 New language features in OCaml 3.12

4 Closing remarks

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 8 / 30

Members

One new member this year: MLState.

11 members total:

before 2007 2008 2009 2010

Dassault Aviation Intel CEA SimCorp MLState
Dassault Systèmes Jane Street OCamlCore
Lexifi Citrix
Microsoft

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 9 / 30

Actions of the Consortium

What the Consortium does:

Sell permissive licensing conditions on the Caml code base.

Enable lightweight corporate sponsoring.

A place to discuss needs with power users from industry.

Public relation.

Brings “pocket money” e.g. for sponsoring this meeting.

New this year:

Acts as a “sounding board” for discussing new features.

Two members contributing directly to the Caml code base.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 10 / 30

Latest meeting of the Consortium

December 2009, in Paris.

Well attended: 12 participants + 4 INRIA.

Fruitful discussions of possible extensions and future developments
(a majority of which materialized in 3.12.0)
(continuing on the Consortium mailing list).

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 11 / 30

Outline

1 Caml development news

2 Caml consortium news

3 New language features in OCaml 3.12

4 Closing remarks

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 12 / 30

1. Record notations

In record patterns and record expressions, a component id stands for
id = id , and M.id stands for M.id = id .

open Complex

let polar d theta =
let re = d *. cos theta and im = d *. sin theta
in { re; im }

let conj { re; im } = { re; im = -. im }

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 13 / 30

1. Record notations

A record pattern can end with ; _, meaning “this pattern doesn’t list all
fields of the record type, but this is intentional”.

open Complex

let proj { re = x } = x (* warn if warning R active *)

let proj { re = x; _ } = x (* does not warn *)

Warning (turned off by default) if no ;_ and some fields are missing.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 14 / 30

2. Explicit method override

method! defines a method like method does, but mark intent to override
a method of the same name already defined in a superclass.

class sub_c = object
inherit c
method! m = ...
method n = ...

end

Error if c does not already defines a method named m.

Warning (turned off by default) if c defines a method named n.

(Same for val! and inherit!.)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 15 / 30

3. Local open (let open . . . in . . .)

By popular demand and also because the corresponding Camlp4 extension
was not robust enough:

let polar d theta =
let open Complex in { re = d *. cos theta; im = d *. sin theta }

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 16 / 30

3. Local open (alternative notation)

M.(e) equivalent to let open M in e

module Float = struct
let (+) = (+.)
let (*) = (*.)

end

let norm x y = Float.(sqrt(x * x + y * y))

(Taking a leaf from Christophe Troestler’s “delimited overloading”
package, but much less powerful.)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 17 / 30

4. Polymorphic recursion

Variables bound by let and let rec can receive an explicit polymorphic
type ’a.τ

let id : ’a. ’a -> ’a = fun x -> x (* OK *)

let id : ’a. ’a -> ’a = fun x -> 1 (* Error *)

let id : ’a -> ’a = fun x -> 1 (* OK with ’a = int *)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 18 / 30

4. Polymorphic recursion

Enables recursive definitions where the recursively-bound functions can be
used at several types within the recursion.

type term =
A of int | B of (string * term) list | C of (int * term) list

let rec shift = function
| A x -> A (x + 1)
| B l -> B (shift_list l)
| C l -> C (shift_list l)

and shift_list: ’a. (’a * term) list -> (’a * term) list = function
| [] -> []
| (key, t) :: rem -> (key, shift t) :: shift_list rem

(Plus: non-regular recursive datatypes, e.g. Okasaki’s data structures.)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 19 / 30

5. First-class modules

Encapsulate a module as a core language value (with an explicit type),
then recover the module from this value.

expr ::= . . . | (module module-expr : package-type)

module-expr ::= . . . | (val expr : package-type)

type ::= . . . | (module package-type)

package-type ::= modtype-path with t1 = τ1 and . . . tn = τn

(An extension of Claudio Russo’s proposal, part of Moscow ML.)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 20 / 30

5. First-class modules

Typical use: selecting at run-time among several implementations of a
signature.

module type DEVICE = sig ... end
let devices : (string, (module DEVICE)) Hashtbl.t

= Hashtbl.create 17

module SVG = struct ... end
let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)

module PDF = struct ... end
let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)

module Device =
(val (try Hashtbl.find devices (parse_cmdline())

with Not_found -> eprintf "Unknown device %s\n"; exit 2)
: DEVICE)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 21 / 30

5. First-class modules

More advanced uses:

Functors that take a list of structures as argument.

Encodings of first-class values with existential types.

Encodings of some Generalized Algebraic Data Types.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 22 / 30

6. Named types as parameters to functions

(type t) in the parameter list of a function.

Within the function, t is a new, abstract type name.

Outside, t becomes a regular type variable α
(which can be generalized or instantiated as usual).

No run-time effect (no type is actually passed).

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 23 / 30

6. Named types as parameters to functions

Usage: bridging module-level constructs and core-level polymorphism.

let sort_uniq (type s) (cmp : s -> s -> int) (l: s list) =
let module S =

Set.Make(struct type t = s let compare = cmp end) in
S.elements (List.fold_right S.add l S.empty)

The function sort_uniq has type

∀α. (α→ α→ int)→ α list→ α list

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 24 / 30

6. Named types as parameters to functions

Another example: local exceptions in polymorphic functions.

let new_exn (type t) () =
let module M = struct exception E of t end in
(fun x -> M.E x), (function M.E x -> Some x | _ -> None)

The function new_exn has type

∀α. unit→ (α→ exn)× (exn→ α option)

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 25 / 30

7. Recovering the type of a module

module type of M denotes the type of the module expression M.

It can be used in conjunction with include to enrich the signature of an
existing module:

module type MYHASH = sig
include module type of Hashtbl
val add_all: (’a, ’b) t -> (’a, ’b) t -> unit

end

module MyHash : MYHASH = struct
include Hashtbl
let add_all t1 t2 = iter (add t1) t2

end

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 26 / 30

8. Substitution & removal of types in signatures

S with type t := τ

Deletes the declaration type t from signature S

Replaces all uses of t in S with τ .

Contrast with S with type t = τ , which

Enriches the declaration type t as type t = τ

Keeps the declaration of t.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 27 / 30

8. Substitution & removal of types in signatures

Application: combine signatures that have identically-named types.

module type S1 = sig type t val op1: ... end
module type S2 = sig type t val op2: ... end

module type S1plus2 =
sig (* or: *) sig
type t
include S1 with t := t include S1
include S2 with t := t include S2 with t := t

end end

Cannot do with regular with type t = τ constraints, because multiple t
components remain.

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 28 / 30

Outline

1 Caml development news

2 Caml consortium news

3 New language features in OCaml 3.12

4 Closing remarks

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 29 / 30

Personal wishes

Hope you will like OCaml 3.12!

How can you help?

By testing & providing quick feedback.

By volunteering to work on parts we handle poorly
(esp. the Windows port and the Windows binary distributions).

By joining community efforts, esp. in the area of packaging and
distribution.

Keep up the good work!

X. Leroy (INRIA) The core Caml system, 2009–2010 OCaml users meeting 2010 30 / 30

	Caml development news
	Caml consortium news
	New language features in OCaml 3.12
	Closing remarks

